
Advanced trainingAdvanced training

Linux components

Command shell

LiLux a.s.b.l.

alexw@linux.lu

KernelKernel

 Interface between devices and hardware

 Monolithic kernel

 Micro kernel

 Supports dynamics loading of modules

 Support for different networks and file
systems

Configuration of the kernelConfiguration of the kernel

Under X

�

Login as root

�

Go to /usr/src/linux

�

make xconfig

In command line

�

Login as root

�

Go to /usr/src/linux

�

make menuconfig

Tips

�

make oldconfig

�

The kernel configuration file .config

How to compile the kernelHow to compile the kernel

1) make dep

2) Make

3) make install

� Using lilo

� /etc/lilo.cong

� lilo

� Using grub

� /etc/grub.conf

� Grub

� root(hd0,0)

� setup(hd0)

4) make modules

5) make modules_install

File systemsFile systems

 ext2 / ext3

 reiserfs

 inodes

 raidtools

 Partition types (fdisk)

 SWAP

 mk2fs, mkreiserfs, mount, umount

Network file systemsNetwork file systems

 NFS

 Samba

� Connectivity with Windows machine

� Samba client

� Samba server

NetworkNetwork

TCP / IP

IP Tables

Schedules (QoS)

Other protocol supported

Ethernet + VLANS

Bridging

Routing

Command shellCommand shell

�

Several Shell commands make it easy to select
information (by row and col) and prepare it for
printing or processing.

�

All files are simple flat files, but with delimiters
like tab they are transformed into a spreadsheet
or relational database.

�

To get data from a spreadsheet or RDBMS you
need to be able to select by row (grep, head,
sed, tail, uniq) and col (cut).

catcat

�

Takes one or more filenames as arguments,
opens the file(s) and copies them to stdout
(usually the terminal, but can be redirected).

�

The real power of cat is being able to stream
multiple files to stdout.

�

Note: cat is not good at handling files with non-
printable control characters, which can produce
gibberish or lock your terminal.

Streams, redirection, pipesStreams, redirection, pipes

�

Streams are the foundation for input and output

�

shell provides it with three standard streams,
with numeric identities 0, 1 and 2

�

Standard input

�

Standard output

�

Error messages

�

 keyboard --> it provides data for the standard
input

�

default output --> streams to your screen

Streams redirectionsStreams redirections

�

Redirection = file descriptor manipulation

�

my_program < input_data.file > output_data.file

>> is used to append data to a file

�

#!/bin/sh

�

echo "Hello" > log.file

�

date >> log.file

�

echo "end of test" >> log.file

PipesPipes

�

Two programs can be linked

�

the (standard) output from the first is sent in
as the (standard) input to the second

�

small utilities each of which performs just one
simple task

�

cat input.file | tee log.file | my_program

List of Selection CommandsList of Selection Commands

� awk pattern scanning and processing language

� cut – Select columns

� diff – compare and select differences in two files

� grep – select lines or rows

� head – select header lines

� sed – edit streams of data

� tail – select tailing lines

� uniq – select unique lines or rows

� wc – count characters, words, or lines in a file

Line or Row Commands 1/2Line or Row Commands 1/2

�

head allows previewing of files; to see the first
ten lines:

• head file

�

tail allows viewing of the last ten lines:

• tail file

Line or Row Commands 2/2Line or Row Commands 2/2

�

To see data being written to a file, use the -f option
with tail.

• Tail gives the usual last ten lines, then sleeps

• Every few secs it wakes and displays added lines

• End with the break command (Delete key or Ctrl-C)

Grep 1/2Grep 1/2

�

globally look for a regular exp and print.”

�

Looks for character strings in files and writes the
requested info on stdout.

�

To get the entire lines containing a word:

� grep PATH /etc/profile

�

Use the -l option to just get filenames:

� grep -l PATH /etc/*

�

 -s will remove the warnings/error messages

•

Grep 2/2Grep 2/2

�

Use the -n option to learn the lines:

• grep -n PATH /etc/profile

�

For strings of more than one word use “""”:
• grep –"export PATH"” /etc/*

�

To ignore differences in case use -i:
• grep –-i pAtH /etc/profile

�

The -v option returns lines that do not contain
the string or pattern specified:

• grep –-v PATH /etc/profile

Regular expressions 1/2Regular expressions 1/2

�

a,b,. . . general characters

�

\ before special characters mentioned below

�

A B Concatenating regular expressions

�

(A) (y) Groups sub-parts of a complicated expression

�

A | B Alternation is written using a vertical bar, which
may be read as OR

�

A*(y) Matches zero or more instances of it;

�

A+ (y) like the star operator, but accepts one or more
instances

Regular expressions 2/2Regular expressions 2/2

�

A? (y) Zero or one matches for the given item

�

A\{n,m\} From n to m repetitions

�

[a-z] Matches a single character, which must be one of
the ones listed within the brackets

�

The mark ^ can be used at the start of a pattern to
negate the sense of a match

�

. Matches any single character except a newline.

�

Thus .* matches any string of characters not
including newlines

�

^ and $ ^ matches at the start of a

�

line, while a $ at the end ensures that matches are only
accepted at the end of a line

Some examples 1/3Some examples 1/3

�

A pattern that matches words that start with a capital
letter but where the rest of the characters (if any) are
lower case letters and digits or underscores

�

[A-Z][a-z0-9_]*

�

The string #include at the start of a line, apart from
possible leading blanks

�

^ *#include

�

 A line consisting of just the single word END

�

^END$

�

 A line with at least two equals signs on it with at least
one character between them

�

=.+=

Some examples 2/3Some examples 2/3

�

Find which file (and which line within it) the string class
LostIt is in, given that it is either in the current directory
or in one called extras

�

grep 'class LostIt' *.java extras/*.java

�

Count the number of lines on which the word if occurs in
each le whose name is of the form *.txt.

�

grep -c "\<if\>" *.txt

Some examples 3/3Some examples 3/3

�

As above, but then use grep again on the output to
select out the lines that end with :0, ie those which give
the names of les that do not contain the word if. This
also illustrates that if no les are specied grep scans the
standard input.

�

grep -c "\<if\>" *.txt | grep :0\$

�

Start the editor passing it the names of all your source
les that mention some variable, presumably because
you want to review or change just those ones. You could
obviously use the same sort of construct to print out just
those les, or perform any other plausible operation on
them.

�

emacs `grep -l some_variable *.java`

wc commandwc command

�

Can count the number of characters, words and
lines in a file (useful to check the outcome of
prior processing – often from a pipe).

�

The three common options:

• -l returns the number of lines

• -w returns the number of “words”

• -c returns the number of characters

uniq commanduniq command

�

Removes identical lines from a file (gets rid of
redundancy). For uniq to work the file must be
sorted, so use sort followed by uniq.

�

If filenames are not given, uniq uses stdin and
stdout.

�

The -d option reports the duplicate lines that
exist in the file (just gives the line once).

�

To get a count of how often lines repeated use
the -c option.

Column CommandsColumn Commands

�

cut actually cuts files into pieces that can be
pasted back together in some other usable
fashion.

�

cut can operate on a char-by-char or a field-by-
field basis or some combination of both.

�

The -f option indicates the fields (start at 1 and
can be used for ranges) and -d can be followed
by a delimiter (tab is default):

• cut -f1,5 -d: <using stdin from a pipe>

sort commandsort command

�

Sort keys the order fields used by sort

• Fields can be delimited by white space (or others)

• Fields can also be defined by character position

• The order can be ascending (default) or descending

�

sort is used most efficiently after grep and cut
have done their selections (less rows).

�

Sorted data often contains duplicate rows; uniq
can remove or display those duplicate lines.

Sort examplesSort examples

�

Sort the password file by user ID and then
extract all users under the file /home:

• sort -t: +0 –1 /etc/passwd | grep home | cut -f1 -d:

�

It would be more efficient to extract the data first
and then sort:

• grep home /etc/passwd | cut -f1 -d: | sort

�

To sort a long listing of a directory by the file
size in bytes (descending numeric order):

• ls -al | sort +4nr

sed transformer commandsed transformer command

�

sed (stream editor) transforms incoming data by
executing editor commands on stdin. It is used
in pipes in place of the standard line editor ed.

�

The original file is never altered, to save the
output you must redirect to another file.

�

For simple substitutions the editor commands
can be put in the command line:

• sed -e “'s/PATH/chemin/'” /etc/profile

• sed –-e “'s/PATH/chemin/g'” /etc/profile

• sed –-e “'s/PATH/chemin/g'”

Some common sed edit commandsSome common sed edit commands

�

Delete lines from a file

• “1,5d”

�

Insert text in the output file:
• “i/this is an inserted line/”

�

Append text in the output file:
• “a/This is an extra line/”

�

Change lines:
• “c/This is a changed line/”

�

Print (select) certain lines from a file:
• “1,5p”

�

Write changed rows to a file:

• “w outputfile”

More examplesMore examples

�

sed can work like a selection command; the -n
option tells it to print just the lines that were
selected with the p option:

• sed –-n “1,10p” file1 > outfile

�

sed can also be used to remove certain
characters from a file:

• … | sed -e “s/[\ta-zA-Z] [\ta-zA-Z]*// g

Questions & AnswersQuestions & Answers

?

